

Achieving impact with ITNs: Rethinking the status quo

<u>Andrew Glover</u>^{*1}, Hannah Koenker², Kate Kolaczinski³, Thomas Churcher¹

¹ MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, UK

² PMI REACH Malaria, PATH, USA

³ The Global Fund, Geneva, Switzerland

*a.glover18@imperial.ac.uk

Presentation Outline

- Universal coverage to optimal coverage
- Was universal coverage achievable with the status quo?
- How can optimal coverage now be achieved?
- Conclusions and final thoughts

• Universal coverage to optimal coverage

- Was universal coverage achievable with the status quo?
- How can optimal coverage now be achieved?
- Conclusions and final thoughts

Universal to optimal coverage

MRC Centre for

Global Infectious Disease Analysis **IMPERIAL**

"Universal coverage is defined as 100%* access to, and use of, ITNs"

World Health Organization. WHO recommendations for achieving universal coverage with long-lasting insecticidal nets in malaria control. World Health Organization. 2013

*80% typically a minimum target

Universal to optimal coverage

MRC Centre for

Universal coverage to optimal coverage

- Was universal coverage achievable with the status quo?
- How can optimal coverage now be achieved?
- Conclusions and final thoughts

Historical use and access

- We fitted usage and access models to DHS & MIS data for subnational regions in 6 countries (Burkina Faso, Ghana, Malawi, Mali, Mozambique and Senegal)
- Surveys are snapshots that can be misleading
- Overall ITN use (and access) >80% achieved only briefly following mass campaigns

Historical use and access

- We fitted usage and access models to DHS & MIS data for subnational regions in 6 countries (Burkina Faso, Ghana, Malawi, Mali, Mozambique and Senegal)
- · Surveys are snapshots that can be misleading
- Overall ITN use (and access) >80% achieved only briefly following mass campaigns
- There is notable variability in use and access

ITN retention

	Access	Use
Regions (n = 146) with mean duration greater than 3 years	12.3%	0.7%

- People stop using ITNs faster than they have access to them
- Use given access declines over time following a mass campaign

	Burkina Faso	Ghana	Malawi	Mali	Mozambique	Senegal		Campaign interval:	3-year	2-year
Mean use		to to to		Res .			-0.2 -0.4 -0.6 -0.8 -1.0	Overall mean use:	47%	55%
Mean access							-0.2 -0.4 -0.6 -0.8 -1.0	Overall mean access:	60%	67%

	Burkina Faso	Ghana	Malawi	Mali	Mozambique	Senegal		Campaign interval:	3-year	2-year
Mean use		and a second		A Company			-0.2 -0.4 -0.6 -0.8	Overall mean use:	47%	55%
Mean access				R			-0.2 -0.4 -0.6 -0.8	Overall mean access:	60%	67%
Mean use given access							-0.2 -0.4 -0.6 -0.8 1.0	Overall mean use given access:	77%	89%

- Universal coverage to optimal coverage
- Was universal coverage achievable with the status quo?
- How can optimal coverage now be achieved?
- Conclusions and final thoughts

MRC Centre for

MRC Centre for

MRC Centre for Global Infectious Disease Analysis

IMPERIAL

3-year pyrethroidonly campaigns: 62.9M [36.6, 82.3] ann. cases averted Avg. ann. cost \$37.5M 8.0M avg. ann. ITNs

Burkina Faso

3-year pyrethroidonly campaigns:
62.9M [36.6, 82.3] ann. cases averted
Avg. ann. cost \$37.5M
8.0M avg. ann. ITNs

0

10

-2

Continuous

channels only

MRC Centre for

Continuous channels only Urban N Rural All None /

MRC Centre for

Continuous channels only Urban N Rural All None /

MRC Centre for

Continuous None Vurban Rural Raral All

MRC Centre for

3-year pyrethroid- only campaigns:	Pyrethroid- pyrrole strategy	Reduced coverage & equivalent cost	Equivalent coverage & increased cost	Equivalent coverage with deprioritisation	
62.9M [36.6, 82.3] ann. cases averted	3-year campaign				
Avg. ann. cost \$37.5M	intervals	Sand	stand.	A REAL	
8.0M avg. ann. ITNs		and the second			
1 Acres	M ann. cases averted Mean ann. ITNs/cost	81.0 [52.2, 107] 7.1M / \$37.5M	85.2 [55.0, 113] 8.0M / \$42.5M	84.3 [71.4, 129] 6.7M / \$35.7M	
PfPR ₂₋₁₀ (%) 0 10 20 30 40 50 60	2-year campaign intervals				
Additional annual cases averted per capita	M ann. cases averted Mean ann. ITNs/cost	96.0 [73.7, 124] 6.8M / \$36.1M	122 [96.2, 147] 11.0M / \$58.8M	107 [87.3, 180] 7.0M / \$37.1M	

Change to budget:

(3-year intervals)

- 630k routine ITNs distributed annually in all scenarios
- Budget achieved by increasing campaign procurement ratios (people per ITN)

Change to budget:

(3-year intervals)

- 630k routine ITNs distributed annually in all scenarios
- Budget achieved by increasing campaign procurement ratios (people per ITN)

Change to budget: (3-year intervals)

- 630k routine ITNs distributed annually in all scenarios
- Budget achieved by increasing campaign procurement ratios (people per ITN)

Change to budget: (3-year intervals)

- 630k routine ITNs • distributed annually in all scenarios
- Budget achieved by ٠ increasing campaign procurement ratios (people per ITN)

6

3

0

-3

-6

Change to budget: (2-year intervals)

0%

- 630k routine ITNs ٠ distributed annually in all scenarios
- Budget achieved by ٠ increasing campaign procurement ratios (people per ITN)

6

3

0

-3

-6

-25%

-50%

- Universal coverage to optimal coverage
- Was universal coverage achievable with the status quo?
- How can optimal coverage now be achieved?
- Conclusions and final thoughts

Summary

- Universal coverage was not consistently achieved anywhere but was (briefly) achieved after mass campaigns in most regions
- **Transmission intensity** best predicts the impact of switching to more regular campaigns and/or better ITNs
- Prioritising higher-transmission settings may be optimal under fixed budgets in some settings
- Switching to **fewer**, **but better nets** could avert:
 - More cases for the same cost
 - Similar numbers of cases under reduced budgets

Pyrethroid resistance is also a poor predictor of impact

MRC Centre for

Considerations for subnational tailoring: ITN retention and use given access

MRC Centre for

Global Infectious **IMPERIAL** Disease Analysis

- In areas of low use given access (quadrants 3 and 4) social behavioural change interventions may improve overall use
- Prioritising more regular • distribution of ITNs in areas of high retention (quadrants 1 and 4) may be more effective, but more regular campaigns when retention is low (quadrants 2 and 3) may be more equitable

Considerations for subnational tailoring: equity of use and access

- Overall use of ITNs is not evenly distributed within sub-national regions
- Overall use of ITNs is more unevenly distributed in some regions than others

Considerations for campaign intervals: *Pf*PR rebounds over time

MRC Centre for Global Infectious Disease Analysis

ious IMPERIAL

Considerations for distribution channels: 39% of used ITNs from routine channels

MRC Centre for Global Infectious Disease Analysis **IMPERIAL**

Adapted from: Bertozzi-Villa, A. et al. Nature Communications 12, 1–12 (2021).