# Simex: Use of geospatial tools for Campaign Digitization

2025 Alliance for Malaria Prevention Annual Partners Meeting and Campaign Digitalization Meeting

The session aims to support effective planning, resource estimation for implementation of preventive interventions for malaria control, integrating modern tools and techniques for geo-enablement: satellite imagery, GIS data and analytics to strengthen malaria prevention efforts.



## Agenda

| Session 1 (30 minutes):<br>Microplan and Geo Enablement: Country<br>Experiences         | Sharing country experiences on implementing microplanning and enablement strategies.<br>Facilitator: WHO GISC                                                                                                                                     |  |  |  |  |  |
|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Session 2 (1 hour 45 minutes):<br>Practical Data and Analysis for Malaria<br>Prevention | Hands-on demonstration of using satellite imagery, building footprints, population data, and accessibility analysis to digitalize health facilities and delineate catchment areas.<br>Facilitator: GISC + Participants                            |  |  |  |  |  |
| Session 3 (30 minutes):<br>Resource Estimation Exercise                                 | Collaborative exercise focused on estimating resources needed for effective malaria prevention interventions.<br>Facilitator: GISC + Participants                                                                                                 |  |  |  |  |  |
| Session 4 (15 minutes):<br>Discussion and Q&A                                           | Open forum to discuss malaria control programs, including preventive interventions<br>like bed-net distribution and vaccination campaigns, along with challenges and<br>expectations from geo-enabled microplanning.<br>Facilitator: Participants |  |  |  |  |  |



## **Microplan and Geo-enablement : Country Experiences**

The Alliance for Malaria Prevention Annual Partners Meeting and Campaign Digitalization Meeting Mövenpick Hotels & Residence Nairobi, Kenya from 7 - 11 April 2025



# WHO GIS Centre for Health



#### Established in May 2022

- Supporting geospatial data and analytics
- Increasing the efficient use of GIS by the Member States and partners
- Promoting a GIS community of practice through training and technical expertise

Contact: gissupport@who.int



# Applications of geospatial data and technology for

- 1. Mapping health facilities and immunization session sites
- 2. Catchment area delineation and basemap creation
- 3. Target population estimation and spatial distribution (including small-area estimation)
- 4. Geographic accessibility analysis and service optimization
- 5. Thematic mapping
- 6. Field and programme monitoring





# Micropian basemap creation - Participatory mapping workshop





# Microplan map creation

Digital microplans are created through a series of trainings and participatory workshops. Key components include:

- Mapping health facilities and immunization session sites
- Mapping catchment area delineation and basemap creation
- Online dashboards created for all health zones
- Gathering and collation of additional spatial and tabular data needed for the microplans (e.g. storage and supplies)





WHO GIS Centre for Health Department of Data and Analytics (DNA)

## Improving target population estimates using geospatial data

High-resolution population estimates from secondary sources help improve the microplan target population estimates. Using spatial analysis and small-area estimation, official national data sources (e.g. census, survey, CRVS) can be triangulated and enhanced/projected to current year and targets.

GIS data used for improving population estimates may include: Modelled estimates:

Household-level data:

Building footprints, survey



(Worldpop, GRID3, Facebook, etc)



Small-area estimation: geostatistical analysis to fill gaps in national surveys





WHO GIS Centre for Health Department of Data and Analytics (DNA)





# Key benefits of geo-enablement

**Enhanced Efficiency:** GIS microplanning optimizes resource allocation and campaign logistics and value-for-money.

**Improved Coverage:** Near real-time data through the capturing of health facility catchments (sub-blocks) helps ensure all households are targeted, minimizing missed opportunities for reaching all populations.

**Strengthened Monitoring:** Geo-enabled dashboards provide leadership and decision-makers with near real-time progress tracking and immunization coverage estimates.

**Sustainable Capacity and knowledge translation:** Workshops with on-site GIS specialists strengthen capacities and ensure long-term sustainability and institutionalization.





### **GIS Microplanning Handbook and E-Learning Course**



Geo-enabled Microplanning Handbook (link here)

Planned translation in French





#### One Campaign Management (OCM) an integrated approach to geo-enabling immunization programmes

The OCM approach equips health programmes with a flexible and custom workflow to plan, execute, and evaluate campaigns with precision, all while integrated with existing national health systems and infrastructure.







#### Department of Data and Analytics (DNA)

#### Bangladesh : Gaps Identified in Conventional Microplan

- Less active Immunization coverage and logistics monitoring practice.
- Errors in session sites distribution, selecting underserved areas, which leads to poor planning.
- Unavailable of real-time digital session planner for Monitoring and supervision.
- Difficult to identify Hard-to-reach and highrisk areas.
- Repetitive information in the Microplan ("copy-paste": prepared without any changes).







#### Maps – result of workshop





#### 2024

#### 2023

## ORC added in Urban Immunization





Rehabilitation center and the new settlement of the homeless people of that union in another union (due to river erosion)





WHO GIS Centre for Health Department of Data and Analytics (DNA)

## Practical Session on Data and Analysis for Malaria Prevention:

- Form Groups
- At least 01 Laptop per Group
- Collect satellite Map
- A problem will be given 01 or 02 groups will be asked to present

The Alliance for Malaria Prevention Annual Partners Meeting Mövenpick Hotels & Residence Nairobi, Kenya from 7 - 11 April 2025



#### Burundi – Monitoring Change in Malaria Incidence – 2016 & 2022





#### Malaria Atlas Project | Data



#### campaign

Digitalization of health facility catchment area and distribution points

#### Main Objective

The main objective is to provide a brief introduction the process to demarcate catchment area on the paper map and digitalize using QGIS software as a part of digital micro-planning for the distribution of malaria prevention kits.

#### **Specific Objectives**

- Briefly present the five steps process of the microplanning
  - Interactive exercise to demarcate respective catchment area
  - Explore QGIS interface, some of its key menus and data format
  - Learn how to import, visualize, and overlay different layers, as well as extract a subset of vector and raster data.





any opinion whatsoever on that part of WHO concerning the legal status of any country, territory, city or area or of bata source: WHO 2024 as autorities, or concerning the denimitation of its frontiers or boundaries. Dotted and dashed lines on maps represent approximate border lines for which there may not yet be full agreement.





## Importing shape (.shp) file into QGIS (1/3)

|  | Create Layer                                                                                                                           | Ctrl+L                 |                                                                                                                                                                                                                        | Si - 🕞 - 🗣                   |  |  |  |
|--|----------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--|--|--|
|  | Add Layer<br>Embed Layers and Groups<br>Add from Layer Definition File<br>Copy Style<br>Paste Style<br>Copy Layer<br>Paste Layer/Group |                        | Add Vector Layer     Ctrl+Sh       Add Raster Layer     Ctrl+Sh       Add Mesh Layer     Ctrl+Sh       Add PostGIS Layers     Ctrl+Sh       Add SpatiaLite Layer     Ctrl+Sh       Add MSSQL Spatial Layer     Ctrl+Sh |                              |  |  |  |
|  | Paste Layer/Group     Open Attribute Table     Filter Attribute Table     Toggle Editing     Save Layer Edits     Current Edits        | F6                     | <ul> <li>Add Oracle Spatial Layer</li> <li>Add SAP HANA Spatial Layer</li> <li>Add/Edit Virtual Layer</li> <li>Add WMS/WMTS Layer</li> <li>Add XYZ Layer</li> </ul>                                                    | Ctrl+Shift+O<br>Ctrl+Shift+W |  |  |  |
|  | Save As<br>Save As Layer Definition File<br>Remove Layer/Group<br>Duplicate Layer(s)<br>Set Scale Visibility of Layer(s)               | Ctrl+D                 | Add WCS Layer         Add WFS Layer         Add ArcGIS REST Server Layer         Add Vector Tile Layer         Add Point Cloud Layer                                                                                   |                              |  |  |  |
|  | Set CRS of Layer(s)<br>Set Project CRS from Layer<br>Layer Properties<br>Filter<br>Labeling                                            | Ctrl+Shift+C<br>Ctrl+F |                                                                                                                                                                                                                        |                              |  |  |  |
|  | Show in Overview<br>Show All in Overview                                                                                               |                        |                                                                                                                                                                                                                        |                              |  |  |  |

Step-by-Step Instructions to add vector layers: 1.Open your QGIS software 2.Go to the Layer menu and select Add Layer 3.Choose Add Vector Layer 4. Geopackage –add all layers



### Adding satellite basemap trough XYZ Tiles in QGIS (2/4)



#### o Add a Satallita Recoman in OCIS:

click OK.

**5.** In browser panel, Expand XYZ Tiles and double click on **Google satellite** to display the satellite image

https://mt1.google.com/vt/lyrs=s&x={x}&y={y}&z={z}

## Digitizing a catchment area into QGIS (2/4)





## Digitizing a catchment area in QGIS (2/4)





Training on use of geospatial tools for microplanning of ITN distribution campaign

- Estimating the buildings need reached per catchment area

The Alliance for Malaria Prevention Annual Partners Meeting Mövenpick Hotels & Residence Nairobi, Kenya from 7 - 11 April 2025



#### Training on use of geospatial tools for microplanning of ITN distribution campaign - Estimating the buildings need reached per catchment area

Select the corresponding polygons and points layers Obtain total counts of points in each team catchment area Q Vector Analysis - Count Points in Polygon Parameters Log Count points in polygon Polygons This algorithm takes a points layer and a polygon layer and counts the number of points from the TeamCatchmentArea [EPSG:4326] - 🖨 🔧 📖 first one in each polygons of the second one. Selected features only A new polygons layer is generated, with the exact same content as the input polygons layer, but containing an additional field with the points count Vector > Analysis Tools > Count Points in Polygon Points 1 corresponding to each polygon. Centroids [EPSG: 32637] - 🕻 🔧 📖 An optional weight field can be used to assign weights to each point. If set, the count generated Q \*Extract buildings - QGIS Selected features only will be the sum of the weight field for each point Project Edit View Layer Settings Plugins ect<u>or R</u>aster <u>D</u>atabase <u>W</u>eb <u>M</u>esh Pro<u>c</u>essing <u>H</u>elp Weight field [optional] contained by the polygon ∑ Basic Statistics for Fields.. Analysis Tool Alternatively, a unique class field can be specified. If set, points are classified based on the selected attribute, and if several points with the same **Geoprocessing Tools** Class field [optional] 🦛 😪 V6 💪 🦏 🔣 🕼 **Geometry** Tools X Line Intersections... attribute value are within the polygon, only one of them is counted. The final count of the point in a **Research Tools** Mean Coordinate(s)... polygon is, therefore, the count of different Browser Count field name classes that are found in it. Data Management Tools Nearest Neighbour Analysis... G C T C O NUMPOINTS Both the weight field and unique class field cannot M Sum Line Lengths... 5 mg 5 2 Count be specified. If they are, the weight field will take precedence and the unique class field will be Favorites Distance Matrix... Spatial Bookmarks THE REAL [Create temporary layer] Party ... ...... ignored. Project Home List Unique Values... ✓ Open output file after running algorithm + Tol Home 0% Cancel Advanced \* Run as Batch Process. Run Close Help



# Training on use of geospatial tools for microplanning of ITN distribution campaign - Estimating the buildings need reached per catchment area

Obtain total counts of points in each team catchment area

A new layer **Count** is generated, representing the catchment areas.

The number labels shown are the total counts of points/buildings in each catchment area.

Right Click > Open Attribute Table > Stroll to the Right

| SUPERVISOR    | SUPERVIS_1   | SUPERVIS_2 | TEAM_CODE        | TEAM, NAME | TEAM_PHONE | COUNTRY | PROVINCE | DISTRICT             | NOTES | Shape_Are        | Shape_Len G           | Olledoli   | CreationDa    | Creator          | EditDate   | Editor          | NUMPOINTS |  |
|---------------|--------------|------------|------------------|------------|------------|---------|----------|----------------------|-------|------------------|-----------------------|------------|---------------|------------------|------------|-----------------|-----------|--|
| 1 AR-Kanyosha | MBARUBUKEYE  | 79904184   | SD-Bonne Hum     | NULL       | MULL       | Burundi | NULL     | DS Mairie Sud        | NULL  | 8.0638089923e-06 | 0.013141971667 (CAA6  | \$E392-105 | 16/03/2022 fi | red_ifrc         | 16/03/2022 | fred_ifrc       | \$74      |  |
| 2 AR-Kinindo  | NAHIMANA Su  | 79945021   | SD-Ecole Les M   | NULL       | PAULL      | Burundi | AUL      | DS Mairie Sud        | NULL  | 8.472976244e-05  | 0.038710143103 (B8E2F | F710-E38D  | 16/03/2022 fi | red_ifrc         | 16/03/2023 | fred_ifec       | 1307      |  |
| 3 AR-Kinindo  | NAHIMANA Su  | 79945021   | SD- Ecofo Kinin  | NULL .     | NULL       | Burundi | AULL     | DS Mairie Sud        | NUEL  | 8.5573950681e-05 | 0.037266034289 (8E387 | 71.AF-A9E  | 16/03/2022 f  | red_ifrc         | 16/03/2022 | fred_ifrc       | 1978      |  |
| 4 AR-Kinindo  | NAHIMANA Su  | 79945021   | SD-Eglise Oasis  | MAL        | NULL       | Burundi | NULL     | DS Mairie Sud        | NULL  | 9.6998219764e-05 | 0.043540207693 (DCBD  | 0C657-0D   | 16/03/2022 fi | red_ifrc         | 16/03/2022 | fred_ifrc       | 950       |  |
| 5 AR-Kinindo  | NAHIMANA Su  | 79945021   | DS-Croix-Roug_   | NUEL       | NULL       | Burundi | NULL     | DS Mairie Sud        | NULL  | 7.5933096006e-05 | 0.041444344835 (205C8 | 8E79-FE12  | 16/03/2022 6  | red_ifrc         | 25/03/2022 | obared_WHO      | 2317      |  |
| 6 AR-Kinindo  | NAHIMANA Su  | 79945021   | NOLL             | NULL       | NULL       | Burundi | AULL     | NGRI.                | NULL  | 6.9067364503e-05 | 0.041415510347 (4CF18 | EFE1-69A   | 16/03/2022 1  | red_ifrc         | 16/03/2022 | fred_ifec       | 1350      |  |
| 7 AR-Kinindo  | NAHIMANA Su- | 79945021   | NULL             | NULL       | NULL       | Burundi | NULL     | DS Mairie Sud        | NULL  | 5.1106987901e-05 | 0.038458718695 (59408 | BE88-608E  | 16/03/2022 1  | red_ifrc         | 16/03/2022 | fred_ifre       | 1153      |  |
| AR-Musaga     | Bizimana Deo | 79578106   | SD-Centre Aka    | NUCL       | NULL       | Burundi | NULL     | <b>DS Mairie Sud</b> | NULL  | 3.6330578102e-05 | 0.030570030314 (50006 | £21A-8E3   | 17/03/2022 fi | red_ifrc         | 17/03/2022 | fred_frc        | 754       |  |
| AR-Musaga     | Bizimana Deo | 79578106   | SD-Ecofo Kinan   | NULL       | AVUE1      | Burundi | AUCC.    | DS Mairie Sud        | NULL. | 7.3133415265e-05 | 0.038978622077 (F54FA | WA30-580   | 17/03/2022 f  | red_ifrc         | 17/03/2022 | fred_itrc       | 1257      |  |
| 0 AR-Musaga   | Bizimana Deo | 79578106   | SD-Hope Clinic   | NOLL.      | NULL       | Burundi | AULE     | NGLI.                | NUEL  | 6.6551528868e-05 | 0.033219684799 (4F0A3 | 8E4D-FF0   | 17/03/2022 fi | red_ifrc         | 17/03/2023 | fred_itrc       | 1150      |  |
| 11 AR-Musaga  | Bizimana Deo | 79578106   | SD-Kwa Vyisi     | NULL       | NULL       | Burundi | NULL     | DS Mairie Sud        | NULL  | 3.8842724514e-05 | 0.029782947292 (366F5 | SCDO-SE1   | 17/03/2022 1  | red_ifrc         | 17/03/2022 | fred_ifrc       | 1617      |  |
| 2 AR-Musaga   | Bizimana Deo | 79578106   | SD-Soquartier K  | NUCL       | 2.034      | Burundi | NULL     | NULL.                | NULL  | 3.420775908e-05  | 0.027600203652 (07FF9 | 9949-50BE  | 17/03/2022 1  | red_ifrc         | 17/03/2022 | fred_frc        | 1649      |  |
| 3 AR-Musaga   | Bizimana Deo | 79578106   | SD-Centre Wallis | NULL       | NULL       | Burundi | NULL.    | DS Mairie Sud        | NUEL  | 4.0173017984e-05 | 0.033087510856 (AFC8  | IE842+188  | 17/03/2022 6  | red_ifrc         | 17/03/2022 | fred_ifre       | 966       |  |
| 4 AR-Kenyosha | MBARUBUKEYE  | 79904184   | SD-CDS GISYO     | NULC       | MAL        | Burundi | MORE     | DS MAIRIE SUD        | NUEL  | 2.5650052332e-05 | 0.028626402338 (7227A | AA25-C04   | 17/03/2022 e  | ibakiremarcy_L_  | 17/03/2022 | nibakiremarcy_L | . 1163    |  |
| 5 AR-Musaga   | Bizimana Deo | 79578106   | SD-Hozagara      | NULC       | NUKL       | Burundi | NUCL     | DS Mairie Sud        | NOLL  | 6.2810160518e-05 | 0.039156198813 (58444 | A73F-20E7  | 17/03/2022 6  | red_ifrc         | 21/03/2022 | fred_frc        | 1260      |  |
| 6 AR-Musaga   | Bizimana Deo | 79578106   | SD-CDS Musaga    | NULL       | NULL       | Burundi | NULL     | DS Mairie Sud        | NULL  | 1.951175751e-05  | 0.026548470253 (48950 | DEDF-FB2   | 17/03/2022 1  | red_ifirc        | 17/03/2022 | fred_ifrc       | 1000      |  |
| 7 AR-Musaga   | Bizimana Deo | 79578106   | SD-Centre Artis  | NULL       | NULL       | Burundi | AUL.     | DS Mairie Sud        | NULL  | 2.7809821751e-05 | 0.029122887673 (77D06 | 671D-012   | 17/03/2022 1  | red_ifrc         | 17/03/2022 | fred_fre        | 874       |  |
| 8 AR-kanyosha | MBARUBUKEVE  | 79904184   | SD-CMS ROSSE     | NULL       | NULL       | Burundi | NULL.    | DS MAIRIE SUD        | NULL  | 5.7406385809e-05 | 0.033450968432 (0C924 | 4050-A28   | 17/03/2022 m  | ibakiremarcy_l_  | 17/03/2022 | nibakiremarcy_L | 1727      |  |
| 9 AR-Musaga   | Bizimana Deo | 79578106   | SD-CEM Musega    | NULL       | NULL       | Burundi | NULL     | DS Mairie Sud        | NULL  | 2.658120334e-05  | 0.026815252676 (DA48  | \$7621-74E | 17/03/2022 fi | red_ifrc         | 17/03 17/0 | 3/2022 ve       | 932       |  |
| 0 AR-Kanyosha | MBARUBUKEYE  | 79904184   | SD-ECOFO KA      | MULL       | NULL       | Burundi | NULL     | DS MAIRIE SUD        | NULL  | 9.8598870371e-05 | 0.043793116362 (157CA | AEBE-516   | 17/03/2022 m  | ibakiremarcy_l   | 17/03/2022 | nibakiremarcy_L | . 708     |  |
| AR-Musaga     | Sizimana Deo | 79578106   | NULL             | NULL       | NULL       | Burundi | NULL     | DS Mairie Sud        | NULL  | 3.4292249235e-05 | 0.024983713517 (10A8  | SCFF-125   | 17/03/2022 6  | red_ifrc         | 17/03/2023 | fred_ifrc       | 1105      |  |
| 2 AR-KANYOSHA | MBARUBUKEYE  | 79904184   | SD-CDS PARABLE   | MULL       | NULL       | Burundi | 110N     | DS MAIRIE SUD        | NULL  | 1.5314027233e-05 | 0.022894758644 (DCA8  | 15307-6F8  | 17/03/2022 #  | ibakiremarcy_L_  | 17/03/2022 | nibakiremarcy_L |           |  |
| 3 AR-Musaga   | Bizimana Deo | 79578106   | SD-Ecofo Musa    | NULL:      | NUCL       | Burundi | NULL     | NULL -               | NULL  | 1.9596217432e-05 | 0.01994919588 (D0512  | 2926-802., | 17/03/2022 f  | red_ifrc         | 17/03/2022 | fred_ifrc       | 1134      |  |
| AR-Musaga     | Bizimana Deo | 79578106   | SD-LM Musaga     | NULL       | NAL        | Burundi | NULL     | DS Mairie Sud        | NULL  | 1.6751006867e-05 | 0.024886731199 (95288 | B6E7-0C6   | 17/03/2022 6  | red_ifrc         | 17/03/2022 | fred_ifrc       | 369       |  |
| B NULL        | NULL         | NUKE       | NULL             | NULE       | NULL       | NUCL    | NULL     | NULL                 | NOLL  | 2.1913250592e-05 | 0.022549884802 (D5FA) | 2104-1CE   | 17/03/2022 n  | ibakiremarcy_I   | 17/03/2022 | nibakiremarcy_L | 890       |  |
| AR MUSAGA     | BIZIMANA Deo | 79578106   | SD-ENR           | NULL       | NGLL       | Burundi | Mairie   | D S Mairie Sud       | NULL  | 6.6832776513e-05 | 0.041088772454 (41AA  | FC23-45A   | 17/03/2022 ft | red_ifrc         | 17/03/2022 | fred_ifrc       | 1118      |  |
| AR-KANYOSHA   | MBARUBUKEYE  | 79904184   | SD-GOSHEN        | NULL       | NULL       | Burundi | NULL     | DS MAIRIE SUD        | NUEL  | 2.996226196e-05  | 0.022325613235 (065D) | C400-88    | 17/03/2022 m  | ibakiremarcy_I_  | 17/03/2022 | nibakiremarcy_L | 1616      |  |
| B AR-KANYOSHA | MBARUBUKEYE  | 79904184   | SD-FINE SCHOOL   | NULL       | NULL       | Burundi | NULL-    | DS MAIRIE SUD        | NULL  | 2.1631763087e-05 | 0.019418438863 (96280 | D53F-58A   | 17/03/2022 m  | ibakiremarcy_L_  | 17/03/2022 | nibakiremarcy_L | 1032      |  |
| 9 AR-MUSAGA   | BIZIMANA Deo | 79578106   | SD-Ecole les Ch  | NGRE .     | NULL       | Burundi | NUCL     | NOLL                 | NULL  | 6.0360154699e-05 | 0.036802240901 [5EC60 |            | 17/03/2022 f  | red_ifrc         | 17/03/2022 | fred_ifrc       | 1018      |  |
| O AR-KANYOSHA | MBARUBUKEYE. | 79904184   | SD-CSKA          | NULL       | NUL        | Burundi | NUEL     | DS MAIRIE SUD        | NULL  | 1.5993861841e-05 | 0.020079189542 (78487 | 7678-03A   | 17/03/2022 n  | ibakiremarcy_L_  | 17/03/2022 | ribakiremarcy_L | 717       |  |
| AR-KANYOSHA   | MBARUBUKEYE  | 79904184   | SD-CMPK          | NOLE       | NULL       | Burundi | Malt.    | DS MAIRIE SUD        | NULL  | 2.2214292074e-05 | 0.02063476772 (BEBD)  | 9136-24A   | 17/03/2022 m  | ibakiremarcy_l_, | 17/03/2022 | nibakiremarcy_L | . 888     |  |
|               |              |            |                  |            |            |         |          |                      |       |                  |                       |            |               |                  |            |                 |           |  |

Type to locate (Ctrl+4) Toggles the editing state of the current l

ordinate -578575, -382571 🖏 Scale 1:24726 💌 🚔 Magnifier 100\*



Training on use of geospatial tools for microplanning of ITN distribution campaign Accessibility Analysis

The Alliance for Malaria Prevention Annual Partners Meeting Mövenpick Hotels & Residence Nairobi, Kenya from 7 - 11 April 2025



#### Accessibility analysis



- 1. <u>Physical accessibility analysis:</u> Assess how physically accessible existing health services are to the target population
- 1. <u>Geographic coverage analysis:</u> Part of the target population that would not receive care due to a shortage of capacity.
- 1. <u>Referral analysis:</u> Measure travel time and distances between <u>health facilities/ sup</u>plier.
- 1. <u>Zonal statistics:</u> Identify percentage of the population having physical access to health services within a given time)
- 1. <u>Scaling up analysis:</u> Design and simulate different scenarios aiming at scaling up the existing service delivery network. (walking, motorized vehicles, etc.)



#### AccessMod

# AccessMod 5.0, Standalone version (2017 release)



http://www.accessmod.org

# AccessMod Next-generation, Web Version (2022 release)







#### AccessMod - Input geospatial data





#### Travel time distribution grid Table Extent of travel time based catchment for different scenarios areas with location of added health Zonal statistics facilities/distribution download Accessibility (120 min) Walking+ motorized in main road WHO, RE M\_MZ\_N <60 min 10 400 13 AFRO = 60-120 min 2 AFRO >120 min 1 ATRO 7 AFRO 12% 12 AFR 14 AFR 3 AFR \_71% 16 AHK 0.7838 0.7903 0.7774 0.7994 0.7581 0.7489 18 AFR 5 AFRC Population coverage by zones Proportion of population covered



AccessMod – Outputs

#### Result





WHO GIS Centre for Health Department of Data and Analytics (DNA)

0%

8%

0% 4%

5%

14%

6%

40%

53%

0%

0%

0%

0%

69%

0%

11%

13%

#### Use of geospatial tools for microplanning of ITN distribution campaign Resource estimation

The Alliance for Malaria Prevention Annual Partners Meeting Mövenpick Hotels & Residence Nairobi, Kenya from 7 - 11 April 2025



|              | Number of       | Number of |           | % pop needed    |
|--------------|-----------------|-----------|-----------|-----------------|
| Catchment    | HF/distribution | building  | PopTotal* | more than 2 hrs |
| Incharge     | point           | structure |           | travel time     |
| 1_Kwame      | 3               | 20752     | 111950    | 0%              |
| 10_Achieng   | 1               | 3702      | 16704     | 8%              |
| 11_Mbali     | 1               | 13427     | 63967     | 0%              |
| 12_Esiankiki | 5               | 33161     | 172759    | 4%              |
| 13_Dikembe   | 4               | 30021     | 147269    | 5%              |
| 14_Nzinga    | 4               | 9635      | 86011     | 14%             |
| 15_Thabo     | 8               | 34438     | 166264    | 6%              |
| 16_Naledi    | 4               | 10059     | 35553     | 40%             |
| 17_Simba     | 3               | 9549      | 26314     | 53%             |
| 2_Amina      | 8               | 53991     | 407487    | 0%              |
| 3_Oluwaseun  | 2               | 19966     | 87231     | 0%              |
| 4_Kofi       | 5               | 39962     | 250391    | 0%              |
| 5_Fatoumata  | 7               | 23634     | 181648    | 0%              |
| 6_Abebe      | 2               | 8916      | 32262     | 69%             |
| 7_Zuberi     | 1               | 15266     | 111864    | 0%              |
| 8_Nyah       | 5               | 18148     | 75346     | 11%             |
| 9_Jabari     | 2               | 10370     | 30768     | 13%             |

The table gives estimate of population reach within 2 hours travel time and number of houses in the respective catchment areas. These are information derived from model, is one of the techniques to derive denominators for programme planning. Participants are required to estimate resources based on the tables.

- What should be **best strategy** to reach maximum number of population in LLIN distribution campaign?
- Estimate LLIN(Bale) for area
- Calculate storage requirements
- Decide whether any catchment area need additional distribution sites or focused communication in making inaccessible areas or intensify monitoring visits.
- Explain how geo-enablement compliments conventional micro-planning.

